MATH 1A - FINAL EXAM SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (20 points) Use the definition of the integral to evaluate:

$$
\int_{0}^{1}\left(x^{3}-2\right) d x
$$

You may use the following formulas:

$$
\sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Preliminary work:

- $f(x)=x^{3}-2$
- $a=0, b=1, \Delta x=\frac{1-0}{n}=\frac{1}{n}$
- $x_{i}=\frac{i}{n}$

$$
\begin{aligned}
\int_{1}^{2} x^{3}-2 d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{1}{n}\right)\left(\left(\frac{i}{n}\right)^{3}-2\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{1}{n}\right)\left(\frac{i^{3}}{n^{3}}-2\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{3}}{n^{4}}-\sum_{i=1}^{n} \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left(\sum_{i=1}^{n} i^{3}\right)-\frac{2}{n}\left(\sum_{i=1}^{n} 1\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left(\frac{n^{2}(n+1)^{2}}{4}\right)-\frac{2}{n}(n) \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{4}-2 \\
& =\frac{1}{4}-2 \\
& =-\frac{7}{4}
\end{aligned}
$$

Check: (not required, but useful)

$$
\int_{0}^{1} x^{3}-2 d x=\left[\frac{x^{4}}{4}-2 x\right]_{0}^{1}=\frac{1}{4}-2-(0-0)=-\frac{7}{4}
$$

2. (10 points) Evaluate the following limit:

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(e^{\frac{1}{n}}+e^{\frac{2}{n}}+\cdots+e^{\frac{n}{n}}\right)
$$

Preliminary work:

- $f(x)=e^{x}$
- $x_{i}=\frac{i}{n}$
- $a=x_{0}=0, b=x_{n}=1$

Hence the limit equals to:

$$
\int_{0}^{1} e^{x} d x=\left[e^{x}\right]_{0}^{1}=e-1
$$

3. (40 points, 5 points each) Find the following:
(a) $\int_{-1}^{1} \sqrt{1-x^{2}} d x$

Note: Don't spend too much time on this one, either you know it or you don't!

The integral represents the area of a semicircle of radius 1 , hence:

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x=\frac{1}{2} \pi(1)^{2}=\frac{\pi}{2}
$$

(b)

$$
\int \frac{1}{x^{2}+1}=\tan ^{-1}(x)+C
$$

(c) The antiderivative F of $f(x)=3 e^{x}+4 \sec ^{2}(x)$ which satisfies $F(0)=1$.

The MGAD of f is $F(x)=3 e^{x}+4 \tan (x)+C$. To find C, use the fact that $F(0)=1$, so $3+0+C=1$, so $C=-2$, hence:

$$
F(x)=3 e^{x}+4 \tan (x)-2
$$

(d)

$$
\int_{0}^{1} x^{3}+x^{4} d x=\left[\frac{x^{4}}{4}+\frac{x^{5}}{5}\right]_{0}^{1}=\frac{1}{4}+\frac{1}{5}=\frac{9}{20}
$$

(e) $g^{\prime}(x)$, where $g(x)=\int_{x^{2}}^{e^{x}} \sin \left(t^{3}\right) d t$

Let $f(t)=\sin \left(t^{3}\right)$, then: $g(x)=F\left(e^{x}\right)-F\left(x^{2}\right)$, so:

$$
\begin{equation*}
g^{\prime}(x)=F^{\prime}\left(e^{x}\right)\left(e^{x}\right)-F^{\prime}\left(x^{2}\right)(2 x)=f\left(e^{x}\right) e^{x}-f\left(x^{2}\right)(2 x)=\sin \left(e^{3 x}\right) e^{x}-\sin \left(x^{6}\right) \tag{2x}
\end{equation*}
$$

(f) $\int e^{x} \sqrt{e^{x}-1} d x$

Let $u=e^{x}-1$, then $d u=e^{x} d x$, so:

$$
\int e^{x} \sqrt{e^{x}-1} d x=\int \sqrt{u} d u=\frac{2}{3} u^{\frac{3}{2}}+C=\frac{2}{3}\left(e^{x}-1\right)^{\frac{3}{2}}+C
$$

(g) $\int_{e}^{e^{2}}\left(\frac{(\ln (x))^{3}}{x}\right) d x$

Let $u=\ln (x)$, then $d u=\frac{1}{x} d x$, and $u(e)=\ln (e)=1$ and $u\left(e^{2}\right)=2$, so:

$$
\int_{e}^{e^{2}}\left(\frac{(\ln (x))^{3}}{x}\right) d x=\int_{1}^{2} u^{3} d u=\left[\frac{u^{4}}{4}\right]_{1}^{2}=\frac{15}{4}
$$

(h) The average value of $f(x)=\sin \left(x^{5}\right)\left(1+e^{-x^{2}}+x^{2}\right)$ on $[-\pi, \pi]$

$$
\frac{\int_{-\pi}^{\pi} \sin \left(x^{5}\right)\left(1+e^{-x^{2}}+x^{2}\right) d x}{2 \pi}=\frac{0}{2 \pi}=0
$$

because f is an odd function.
4. (20 points) Find the area of the region enclosed by the curves:

$$
y=\cos (x) \quad \text { and } \quad y=-\cos (x)
$$

from 0 to π.
Hint: It might help to notice a certain symmetry in your picture!

Picture:

> 1A/Math 1A Summer/Exams/Finalarea.png

Then determine the points of intersection between the two curves:

$$
\begin{aligned}
\cos (x) & =-\cos (x) \\
2 \cos (x) & =0 \\
\cos (x) & =0 \\
x & =\frac{\pi}{2}
\end{aligned}
$$

On $\left[0, \frac{\pi}{2}\right], \cos (x)$ is above $-\cos (x)$, and on $\left[\frac{\pi}{2}, \pi\right],-\cos (x)$ is above $\cos (x)$, so we'll have to figure out $A+B$ as in the picture. However, notice the symmetry! Namely, $A=B$, so all we really need to calculate is $A+B=2 A$, that is:

$$
\begin{aligned}
\text { Area } & =2 \int_{0}^{\frac{\pi}{2}}(\cos (x)-(-\cos (x))) d x \\
& =2 \int_{0}^{\frac{\pi}{2}} 2 \cos (x) d x \\
& =4 \int_{0}^{\frac{\pi}{2}} \cos (x) d x \\
& =4[\sin (x)]_{0}^{\frac{\pi}{2}} \\
& =4(1-0) \\
& =4
\end{aligned}
$$

5. (20 points, 10 points each) Find the following limits
(a) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+4}}{x}$

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+4}}{x} & =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}} \sqrt{1+\frac{4}{x^{2}}}}{x} \\
& =\lim _{x \rightarrow-\infty} \frac{-x \sqrt{1+\frac{4}{x^{2}}}}{x} \\
& =\lim _{x \rightarrow-\infty}-\sqrt{1+\frac{4}{x^{2}}} \\
& =-\sqrt{1+0} \\
& =-1
\end{aligned}
$$

Here we used the fact that $\sqrt{x^{2}}=|x|=-x$, since $x<0$.
(b) $\lim _{x \rightarrow 0^{+}} x^{x^{2}}$

1) Let $y=x^{x^{2}}$
2) Then $\ln (y)=x^{2} \ln (x)$
3)

$\lim _{x \rightarrow 0^{+}} \ln (y)=\lim _{x \rightarrow 0^{+}} x^{2} \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{-2}} \stackrel{H}{=} \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{x^{3}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{-2}=0$
4) Hence

$$
\lim _{x \rightarrow \infty} y=e^{0}=1
$$

6. (20 points, 10 points each) Find the derivatives of the following functions
(a) $f(x)=(\sin (x))^{x}$

Logarithmic differentiation

1) Let $y=(\sin (x))^{x}$
2) Then $\ln (y)=x \ln (\sin (x))$
3) $\frac{y^{\prime}}{y}=\ln (\sin (x))+x \frac{\sin (x)}{\cos (x)}$
4)

$y^{\prime}=y\left(\ln (\sin (x))+x \frac{\sin (x)}{\cos (x)}\right)=(\sin (x))^{x}(\ln (\sin (x))+x \tan (x))$
(b) y^{\prime}, where $x^{y}=y^{x}$

Taking lns:

$$
y \ln (x)=x \ln (y)
$$

Differentiating and solving for y^{\prime} :

$$
\begin{aligned}
y^{\prime} \ln (x)+\frac{y}{x} & =\ln (y)+\frac{x y^{\prime}}{y} \\
y^{\prime}\left(\ln (x)-\frac{x}{y}\right) & =\ln (y)-\frac{y}{x} \\
y^{\prime} & =\frac{\ln (y)-\frac{y}{x}}{\ln (x)-\frac{x}{y}}
\end{aligned}
$$

7. (10 points) Find the absolute maximum and minimum of the following function on $\left[0, \frac{\pi}{2}\right]$:

$$
f(x)=\sin (x)+\cos (x)
$$

1) Endpoints: $f(0)=0+1=1, f\left(\frac{\pi}{2}\right)=1+0=1$
2) Critical numbers:

$$
\begin{gathered}
f^{\prime}(x)=\cos (x)-\sin (x)=0 \Longleftrightarrow \cos (x)=\sin (x) \Longleftrightarrow x=\frac{\pi}{4} \\
f\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}=\sqrt{2}
\end{gathered}
$$

3) Compare: The absolute max of f is $f\left(\frac{\pi}{4}\right)=\sqrt{2}$ and the absolute min of f is $f(0)=f\left(\frac{\pi}{2}\right)=1$
8. (10 points) Who's your favorite Math 1A teacher of all time???? :D Any other goodbye words?

I hope you answered Peyam :)

Bonus 1 (5 points) Fill in the gaps in the following proof that the function f is not integrable on $[0,1]$:

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } x \text { is rational } \\
1 & \text { if } x \text { is irrational }
\end{array}\right.
$$

Step 1: Pick x_{i}^{*} such that x_{i}^{*} is rational. Then:

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}^{*}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}(0) \\
& =\lim _{n \rightarrow \infty} 0 \\
& =0
\end{aligned}
$$

Step 2: Pick x_{i}^{*} such that x_{i}^{*} is irrational. Then:

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}^{*}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}(1) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} 1 \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}(n) \\
& =\lim _{n \rightarrow \infty} 1 \\
& =1
\end{aligned}
$$

Since we get two different answers for the integral, we have a contradiction. $\Rightarrow \Leftarrow$. And hence f is not integrable on $[0,1]$.

Note: See the handout 'Integration sucks!!!' for a nice discussion of this problem!

Bonus 2 (5 points) Another way to define $\ln (x)$ is:

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t
$$

Show using this definition only that $\ln \left(e^{x}\right)=x$.
Hint: Let $g(x)=\ln \left(e^{x}\right)=\int_{1}^{e^{x}} \frac{1}{t} d t$. Differentiate f, simplify, and antidifferentiate. Make sure you face the issue of the constant!

Let $f(t)=\frac{1}{t}$, then $g(x)=F\left(e^{x}\right)-F(1)$, so:

$$
g^{\prime}(x)=F^{\prime}\left(e^{x}\right)\left(e^{x}\right)-0=f\left(e^{x}\right)\left(e^{x}\right)=\frac{1}{e^{x}} e^{x}=1
$$

Since $g^{\prime}(x)=1$, we get $g(x)=x+C$. To figure out what C is, plug in $x=0$, and we get:

$$
\begin{aligned}
g(0) & =0+C \\
\int_{1}^{e^{0}} \frac{1}{t} d t & =C \\
\int_{1}^{1} \frac{1}{t} d t & =C \\
0 & =C \\
C & =0
\end{aligned}
$$

Hence $g(x)=x$, so $\ln \left(e^{x}\right)=x$

Bonus 3 (5 points) Define the Product integral $\prod_{a}^{b} f(x) d x$ as follows:
If we define $\Delta x, x_{i}$, and x_{i}^{*} as usual, then:
$\prod_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left(f\left(x_{1}^{*}\right)\right)^{\Delta x}\left(f\left(x_{2}^{*}\right)\right)^{\Delta x} \cdots\left(f\left(x_{n}^{*}\right)\right)^{\Delta x}$
(that is, instead of summing up the $f\left(x_{i}^{*}\right)$, we just multiply them!)
Show that this is nothing new, that is, express $\prod_{a}^{b} f(x) d x$ in terms of $\int_{a}^{b} f(x) d x$

Hint: How do you turn a product into a sum?

Let $P=\prod_{a}^{b} f(x) d x$. Then:

$$
\begin{aligned}
\ln (P) & =\ln \left(\lim _{n \rightarrow \infty}\left(f\left(x_{1}^{*}\right)\right)^{\Delta x}\left(f\left(x_{2}^{*}\right)\right)^{\Delta x} \cdots\left(f\left(x_{n}^{*}\right)\right)^{\Delta x}\right) \\
& =\lim _{n \rightarrow \infty} \ln \left(\left(f\left(x_{1}^{*}\right)\right)^{\Delta x}\left(f\left(x_{2}^{*}\right)\right)^{\Delta x} \cdots\left(f\left(x_{n}^{*}\right)\right)^{\Delta x}\right) \\
& =\lim _{n \rightarrow \infty} \ln \left(f\left(x_{1}^{*}\right)^{\Delta x}\right)+\ln \left(f\left(x_{2}^{*}\right)^{\Delta x}\right)+\cdots+\ln \left(f\left(x_{n}^{*}\right)^{\Delta x}\right) \\
& =\lim _{n \rightarrow \infty} \Delta x \ln \left(f\left(x_{1}^{*}\right)\right)+\Delta x \ln \left(f\left(x_{2}^{*}\right)\right)+\cdots+\Delta x \ln \left(f\left(x_{n}^{*}\right)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x \ln \left(f\left(x_{i}^{*}\right)\right) \\
& =\int_{a}^{b} \ln (f(x)) d x
\end{aligned}
$$

So $\ln (P)=\int_{a}^{b} \ln (f(x)) d x$, so $P=e^{\int_{a}^{b} \ln (f(x)) d x}$, hence:

$$
\prod_{a}^{b} f(x) d x=e^{\int_{a}^{b} \ln (f(x)) d x}
$$

